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A-Train Advances for Cloud Profiling

Alnstrument synergy
A Cloud profiling radar
A Cloud and aerosol lidar
A High resolution visible, near-IR, IR imaging
A Thermodynamic sounding (cloud context)

AGlobal observations

AWhat is next?

A Time dimension, processes?
A Additional measurements?

AQuestions: .
AHow much information do current measurements prowde?
AHow to quantify measurement requirements for next generation systems?
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AHow to quantify measurement requirements for next generation systems?
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Observing System Simulation Experiments

ATraditionally: evaluation of potential impact of new observations on a
NWP forecast (Hoffman and Atlas, 2016; BAMS)

AFundamentally: quantify information in a future observing system

AConsider a spectrum of OSSEs:

ADo measurements provide enough information to estimate geophysical
guantities of interest? What are the uncertainties? (retrieval OSSE)

AWhich measurements are needed to characterize observe a process
(or set of processes) (process OSSE)

AWhich observations should be made to constrain climate forcing and response
(climate OSSE)

AHow does assimilation of new observations affect/improve a weather forecast?
(forecast OSSE)
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Quantifying Information

AThink about retrievals
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Quantifying Information

Specific application: vertical profiles of cloud properties

A What is the range of possible
solutions? /
A |1s there a single mos

likely solution?

Uncertainty in measurements

and forward models A
a distribution of possible
retrieval solutions

How can we know?
®\/hich observations do we
need?

A Is there skewness
(bias)?

A How much
information is
contributed by various
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Bayesian Perspective

Goal: understand the range of retrieval solutions (uncertainty quantification)
and the contribution of various measurements

The solution is a distribution of possible outcomes: a PDF

ACan be described using probability theory i what is the likelihood of a particular
state, given everything we know about the system of interest?

AQuantify the information we already have (prior, p(x))
A Quantify the influence of new information

(observations/likelinood, p(y[x)) p(Xy) 1 p(y | X) p(x)

AQuantify the range of solutions, given these pieces of information
(analysis/retrieval/posterior, p(x|y))

Bayes theorem combines the available pieces of information
to produce a retrieval solution
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Obtaining the Bayesian Solution

Goal: estimate p(x|y) given p(y|Xx) ::::::::::::::;::f;::
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Options: ooooooooooooo/:: ICIC
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A Assume a distribution for each source of information oloejo[e[o[0[c/oto]0]0]0[0 P oiéeT0(0]e
ololo/oo/e/of® 0@ pof.’fo:oo

A Compute by brute force ::::2:. .gz;.:.:.::
oooo Y ole0o0o0e

A Random sample (Monte Carlo) ::::q Slaiélalsslololo/olsle]ole
.Q.. oo ,’..........

A Construct a Markov chain that samples p(x|y) B b b b B e
. . oloolo/o/o|o|/o/o/eo|eo/eo|/eo|eo/eoeoe|e|e|e|e

Markov chain Monte Carlo: ole[olo/dle/ole[s/ele/e/ele/eole/celele

A Produces a sample of p(x]|y)

A Avoids states that provide a poor fit p(X ‘ y) Il p(y ‘X) p(X)
to observations (low likelihood p(y|x) )

A Flexible probability distributions (no need for Gaussian assumption)
Posselt et al. (2008, JGR), Posselt and Mace (2014, JAMC), Posselt et al. (2015, MWR), Posselt et al. (2017, JAMC)
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Posterior Distribution
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Bayesian retrieval.

AJoint PDF of all cloud
properties at every level
AUniqueness
ACorrelation
AVariance (uncertainty)
ASkewness (bias)
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